+30 km
Uren
Opleiding
Dienstverband
Ervaring
Salaris
Datum
Bedrijfstype
Zoek vacatures
Soortgelijke vacatures omgeving Utrecht.
Laad meer vacatures

PhD Candidate Prompt-based AI for Radiotherapy Target Volume Segmentation Utrecht UMC Utrecht

Solliciteer nu
Solliciteer als één van de eersten
Opslaan
Solliciteer nu
Opslaan
Delen

Gevraagd

  • 36 uur
  • Nederlands (taal)

Aanbod

  • Vast contract
  • 3.108 - € 3.939 p/m (bruto)
  • Eindejaarsuitkering, Pensioenregeling, Reiskostenvergoeding, Doorgroeimogelijkheden
 

Vacature in het kort

Utrecht
Want to build AI that's used in real clinical workflows? Join as a PhD candidate to develop adaptive segmentation models for radiotherapy, enhancing patient care with AI-driven solutions. Collaborate with leading experts in a world-renowned department, contributing to cutting-edge research in personalized cancer treatment. Enjoy excellent benefits like a year-end bonus, public transport reimbursement, and opportunities for personal and professional growth in a dynamic environment. See how you can contribute to our success by reading further.
 

Over het bedrijf

UMC Utrecht
Directe werkgever251 - 1000 medewerkers
Bedrijfsprofiel
Medewerkers
Sollicitatieprocedure
 

Volledige vacaturetekst

Want to build AI that's used in real clinical workflows? UMC Utrecht is hiring a PhD candidate to develop and clinically translate adaptive segmentation models for radiotherapy based on 3D imaging data and clinical text.
  • Elke dag de zorg en de gezondheid van mensen verbeteren
  • Goede arbeidsvoorwaarden
  • Jezelf continu blijven ontwikkelen vinden we belangrijk
Dit ga je doen

Accurate delineation of tumor target volumes is a critical step in the radiotherapy workflow. While deep learning models have successfully enabled automated segmentation of organs-at-risk, the delineation of tumor targets remains a major challenge due to large interpatient variability. Moreover, in contrast to healthy organs, delineation of tumors requires integration of clinical context such as tumor stage, surgery reports, and patient-specific risk profiles. Recent work has shown that large language model (LLM)-driven prompt-based segmentation can outperform vision-only approaches.

In this PhD project, you will develop and clinically translate next-generation multimodal AI models for prompt-driven segmentation, using clinical text and 3D imaging data in tandem. The goal is to move beyond static image-to-image auto-contouring and instead create dynamic, context-aware systems that adapt to each patient’s scenario.

During your PhD, you will work on the following work packages:

WP1: Development of prompt-based segmentation models

Inspired by LLMSeg (Oh et al., Nat. Commun. 2024) and nnInteractive (Isensee et al. 2025), you will build multimodal segmentation networks that integrate clinical prompts with image features. You will investigate fine-tuning strategies (e.g., prompt tuning, LoRA) and evaluate model performance in terms of accuracy, data efficiency, model uncertainty, and robustness across institutions.

WP2: Clinical scenario modeling and explainability

You will design methods for generating structured clinical prompts from medical records and evaluate how prompt variations affect model behavior. You will also develop explainability tools to support clinical evaluation, such as attention heatmaps and prompt-response diagnostics.

WP3: Clinical deployment in image-guided radiotherapy

You will translate the developed models to clinical settings, working closely with radiation oncologists and RTTs to evaluate feasibility in daily practice. Integration into adaptive radiotherapy workflows (e.g., MR-guided online re-planning) will be explored in our institutional roadmap for AI-enhanced radiotherapy.

WP4: Interactive AI for clinician-in-the-loop segmentation

To support clinical usability, you will develop interactive correction tools that allow radiation oncologists to quickly adjust AI-generated contours using minimal input (e.g., positive/negative scribbles or brush strokes). These user inputs will be incorporated into the segmentation network through guided refinement, allowing the AI to recalculate the target and OAR volumes in real-time based on clinician feedback. This approach supports a human-in-the-loop workflow

Hier ga je werken

The Department of Radiotherapy at the University Medical Center Utrecht is the birthplace of the 1.5 T MR-Linac and a world leader in MR-guided radiotherapy. The department hosts over 40 PhD candidates working on topics ranging from advanced imaging physics to clinical implementation. This project will be part of the IMAGINE program and contribute to shaping the future of personalized, automated cancer care.

Dit neem je mee
  • You are an ambitious and creative candidate with an MSc in Artificial Intelligence, Biomedical Engineering, Technical Medicine, or a related field.
  • You have strong programming skills (Python/Matlab), experience with deep learning and medical imaging, and a clear interest in AI applications in oncology.
  • Familiarity with radiotherapy workflows or clinical data is a plus.
  • You are proactive, collaborative, and capable of translating novel ideas into practical solutions.
  • Strong communication and writing skills and the ability to publish in scientific journals are essential.
Dit bieden we jou
  • A salary between € 3108 and € 3939 gross per month (salary scale OIO), based on full-time employment (36 hours). 
  • Year-end bonus of 8.3% and holiday allowance of 8%. 
  • Pension insurance with ABP. We take care of approximately 70% of the monthly contribution. 
  • 100% public transport reimbursement. Are you coming on foot, by bike or by car? You will then receive a reimbursement of € 0.18 per km (by car up to a max. of 40 km one way). 
  • Possibilities to develop yourself personally and professionally. 
  • The option to select additional employment benefits in exchange for gross salary, such as purchasing a bicycle and memberships. 

Wij geloven in de kracht van een divers team waarin ruimte is voor verschillende vaardigheden, expertises, sociale en culturele achtergronden. Wij zijn benieuwd naar jou!


Onze nieuwe collega's werven we zelf. We hebben geen behoefte aan acquisitie.


Sollicitatieprocedure
  • Een leuke vacature gevonden?
    Solliciteer! Stuur ons je cv en motivatiebrief.

  • Dank voor je sollicitatie
    Je ontvangt meteen een ontvangstbevestiging van ons.

  • Selectieproces
    Binnen twee weken na sluiting vacature hoor je van ons of je bent uitgenodigd

  • Eerste gesprek
    Samen kijken we of er een match is.

  • Tweede gesprek
    Bij een match volgt er een voorstel arbeidsvoorwaarden of assessment.

  • Welkom!
    Wat fijn dat je bij ons aan de slag gaat! Heel veel werkplezier!

Kom meer te weten over werken bij het UMC Utrecht

Dit bieden we jou

Kom je bij ons werken? Dan geldt voor jou de cao umc. Daarnaast bieden we je nog veel meer en organiseren we van alles zodat jij jezelf kan blijven ontwikkelen.

Samen zijn wij UMC Utrecht

Wij geloven in de kracht van een divers team waarin ruimte is voor verschillende vaardigheden, expertises, sociale en culturele achtergronden. Wij zijn benieuwd naar jou!

Kom je langs

Binnen het UMC Utrecht organiseren we regelmatig evenementen. Zo kan jij je goed oriënteren op werken bij ons ziekenhuis!

Vacature opslaan
 Vacature delen
Sluit
Je notitie is succesvol opgeslagen
Voeg een notitie toe aan deze vacature
Opslaan
Sluit
Bedankt, je melding is verstuurd
Rapporteer deze vacature
Leg kort uit waarom je deze vacature rapporteert:
Versturen
Terug naar vacatures
Sluit
Kies 1 of meer
Sluit
Vacature opgeslagen
Klik op het hartje bovenaan de pagina om je opgeslagen vacatures te zien.
Terug naar vacatures
Sluit
Vul een in